Daily Productive Sharing 1246 - Build a Truly Useful AI Product
One helpful tip per day:)
Chris Pedrega, founder of Granola, believes that if building a startup is like playing a hard video game, then building in generative AI is like playing that game at 2x speed:
- If you're not careful, you might spend weeks building a feature only to see it instantly automated by the next major AI model release.
- Everyone has access to powerful APIs and cutting-edge LLMs—so your “brilliant product idea” can be built by anyone.
- LLMs unlock unprecedented capabilities—like code generation and research assistance—but you need to surf the AI wave, not get crushed by it.
- LLMs are evolving faster than almost any technology in history.
- Don’t waste time solving “soon-to-vanish problems.” It sounds obvious, but it's hard to follow—because it goes against instinct.
- Predicting the future is now part of your job.
- The marginal cost of serving an additional user is the same—but running state-of-the-art AI is really expensive.
- Large companies with millions of users often can’t compete with you—there simply isn’t enough compute to scale bleeding-edge experiences.
- As a startup, you can deliver a Ferrari-tier experience using the most advanced, expensive models. You don’t need to optimize costs yet. Giants like Google can only offer Honda-tier service. The magic? Today’s Ferrari will be tomorrow’s Honda. Build the Ferrari now.
- Don’t treat AI models like obedient tools. Treat them like interns on their first day—success depends on giving them enough context so they can “think like you.”
- “Context window design” may become one of this era’s most important ideas—far beyond just AI.
- One of the biggest challenges today is that you’re competing with general-purpose assistants like ChatGPT and Claude that do most things pretty well.
- The only winning strategy: go ultra-narrow. Pick a very specific use case—and nail it.
- A world-class experience in a niche use case often has little to do with the AI itself.
- Being use-case-specific also helps you improve model performance more easily.
- When AI is right, it feels magical. When it’s wrong, it can be confusing—or downright eerie.
- Specializing makes it easier to identify the most common failure cases and handle them gracefully.
- Building in generative AI is like sprinting on a treadmill—while traditional tech is still strolling along.
If you enjoy today's sharing, why not subscribe
Need a superb CV, please try our CV Consultation
Granola 的创始人 Chris Pedrega 认为如果说创建一家初创公司就像是在玩一款高难度电子游戏,那么在生成式 AI 领域创业就像是以 2 倍速玩这款游戏:
- 如果你不够小心,可能会花好几周开发一个功能,却发现下一个 AI 模型发布时已经把它自动化了。
- 因为每个人都能接触到强大的 API 和前沿的大语言模型,你的“惊艳产品创意”也可以被任何人实现。
- 大语言模型(LLMs)开启了前所未有的产品能力,比如代码生成、研究辅助等——但你需要确保自己是“在 AI 浪潮上冲浪”,而不是被浪拍翻。
- LLM 正经历历史上最快的技术迭代之一。
- 不要浪费时间在那些“即将消失的问题”上。听起来很简单,但做起来很难,因为它违背直觉。
- 预测未来现在是你工作的一部分。
- 每新增一个用户的边际成本是一样的,而运行最前沿的 AI 模型真的很昂贵。
- 拥有上百万用户的大公司甚至无法与你竞争,因为全球根本没有足够的算力让他们在规模化时也能提供前沿体验。
- 作为初创公司,你可以为每位用户提供“法拉利级”的体验。用最贵、最前沿的模型。不必过于担心成本优化。像 Google 这样的巨头,最多只能为用户提供“本田级”的体验。美妙的是,就算你的用户规模呈指数增长,AI 推理的成本也在以同样的速度下降。今天的“法拉利”,将是明天的“本田”。趁你还可以时,做那辆法拉利。
- 不要把 AI 模型只当作“听指令的工具”,而应该把它们当作“刚入职第一天的实习生”。实习生能否成功的关键在于:你是否给了他们足够的上下文,让他们能“像你一样思考”。
- 他相信,“上下文窗口选择”将成为我们这个时代的核心理念之一,其影响远超 AI 领域。
- 如今构建 AI 产品的一大挑战是:你正在和 ChatGPT、Claude 等“通用 AI 助理”竞争,它们大多数事情都做得还不错。唯一的应对方式是走“超窄垂直方向”:选择一个非常具体的应用场景,并在该领域做到极致。
- 面向特定用例的“卓越体验”,往往和 AI 本身没太大关系。
- 专注于具体场景,也能让你更容易改进 AI 部分的表现。
- 当 AI 答得准时,它像魔法一样;但答错时,常常表现得令人困惑甚至毛骨悚然。
- 聚焦在特定用例上,更容易识别最常见的 AI 失误情形,并尝试避免或更优雅地失败。
- 在生成式 AI 领域做产品,就像在跑步机上冲刺,而传统科技仍在慢慢散步。
如果你喜欢的话,不妨直接订阅这份电子报 ⬇️