Daily Productive Sharing 1271 - AI-assisted Coding
One helpful tip per day:)
Atharva Raykar argues that building with AI can dramatically accelerate development. Speed matters because, used well, it shortens the feedback loop with users and leads to better products.
- However, AI tools can also be tricky. If used poorly, they don’t just produce mediocre results—they can throw a project into chaos and technical debt, ultimately slowing everything down.
- To benefit from AI, you first have to strengthen your own skills—because AI is a multiplier.
- He therefore advocates a craftsman’s mindset: even with AI assistance, the final product should be something you’re proud to sign your name to.
- One effective tactic is “meta-prompting.” He begins with a simple task prompt, asking the model to surface trade-offs and edge cases. He then refines those points into a technical plan and hands it to another LLM agent for execution.
- In his experience, today’s models are already remarkably good at prompting themselves.
If you enjoy today's sharing, why not subscribe
Need a superb CV, please try our CV Consultation
Atharva Raykar 认为,用 AI 开发速度很快。速度提升非常关键,因为若利用得当,就能让团队更快地与用户形成反馈循环,从而打造出更好的产品。
- 然而,AI 工具有时候也很难用。若使用方式不当,结果不仅平庸,更糟的是可能让项目陷入混乱与技术债务,从而拖慢进度。
- 想用好 AI,就要先让自己变得更强。因为 AI 是倍增器。
- 因此,他主张要像工匠一样用心。即使有 AI 协助,最终做出来的东西也要是自己引以为傲的作品。
- 一个对他们很有效的技巧是“元提示”。他会先用简单的任务提示模型,并让它帮忙找出权衡与边缘场景。随后,他再把这些整理成技术方案,交给另一个 LLM agent 去执行。
- 根据他的经验,如今的模型已经相当擅长自我提示。
如果你喜欢的话,不妨直接订阅这份电子报 ⬇️